

EU Sphere Solutions for Europe

natural refrigerants

5 – 7 November 2012 in Brussels

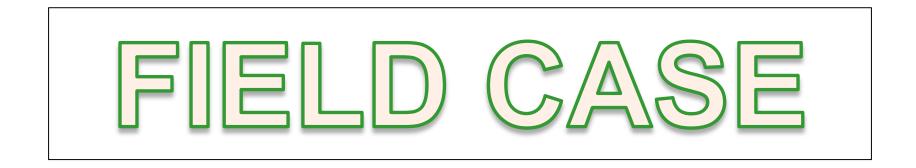
Presented by Jan Boone, MAYEKAWA

MARKET TREND

ATMO faster to Europe sphere natural refrigerants

NATURAL	APPLICATION	QUANTITIES	NOTES					
REFRIGERANT			RANGE		TEMPERAT	URE	TREND	
			kW	kW	°C	°C	%	
NH3	COMPRESSION HEAT PUMP	PISTON	200	600	50	80	25	
		SCREW	500	2000	50	80	150	
CO2	COMPRESSION	PISTON		1000	-52	-30	150	
	SOBORINEAL	SCREW		3000	-52	-30	150	
	COMPRESSION TRANSCRITICAL HEAT PUMP	PISTON		90	90	100		ECO-CUTE (P&K) (MJ : 300 pcs)
	PUMP SECONDARY BRINE	SCREW		90 800		-30 -30		NEWTON3000 (P&K) (MJ : 350 pcs)
HC	COMPRESSION SUBCRITICAL	PISTON		2000	-40	-20	10	process/chemical
WATER	ADSORPTION DESORPTION	ADREF	100					ADREF (P&K) (MJ : +50pcs)
AIR	COMPRESSION TRANSCRITICAL	TURBINE		30	-120	-80		PASCAL AIR (MJ : 10 pcs)

MAYEKAWA Europe nv/sapoc.2012-368 R5b


FIELD CASES :

NATURAL REFRIGERANTS In Different Industrial HEAT PUMP plants in Norway

TECHNOLOGY AREA – ENERGY STATION – COOLING & HEATING

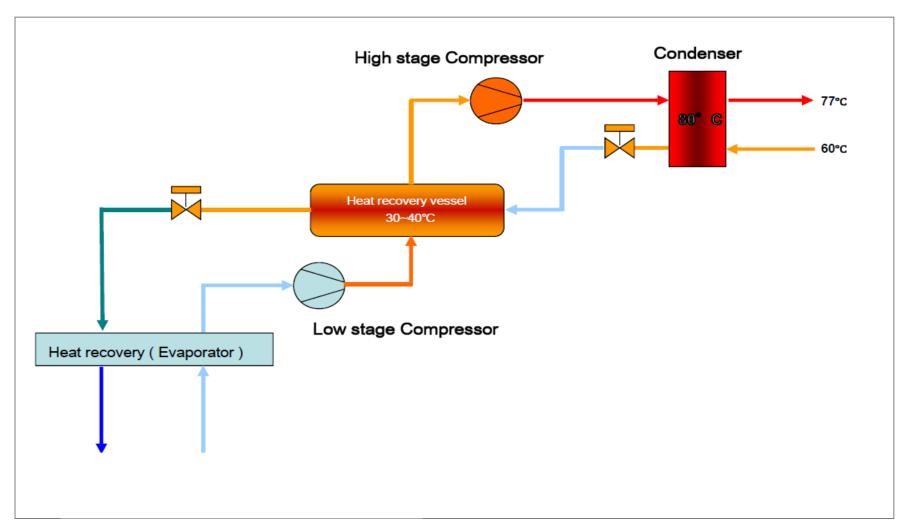
MYCOM

INTRODUCTION

Starting point, need?	The contractor THERMA INDUSTRI has received the request from his customer to install 2 hot water heat pumps, each 1350kW for 77°C.
Heat output ?	
2700 kW	The plant is an energy station of a technology area.
77°C	
	The cooling is used to produce ice-water for :
	Office cooling
	Cooling for data center
	The heating is used to produce hot water of maximum 82°C for :
	District heating
Heat Source ?	Requirements ?
	Heat source :
30°C to 40°C	1) Heat rejection from the cooling plant needed for office- and process cooling
	Minimum load : 600 kW
	Maximum load : 5000 kW
	2) Sewage water in case insufficient cooling plant heat rejection available.

MAYEKAWA Europe nv/sapoc.2012-368 R5b

Restrictions?

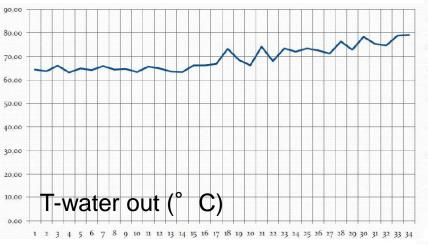


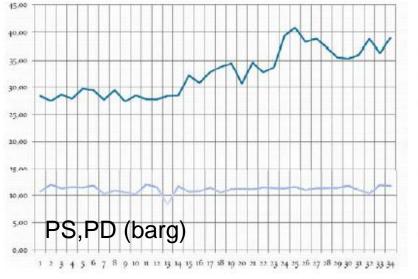
Why natural refrigerants +80°C	For the temperature of 80°C NH $_{\mbox{\scriptsize 3}}$ is the most suitable refrigerant
Which choice & why	NH₃ (TC=+80°C & PD=39,6barg) as natural refrigerant to obtain 77°C hot water. 50bar compressor available NH₃ is standard application for Therma Industri.
Timeframe	The project started in 2008. Installation done in 2009.

MAYEKAWA Europe nv/sadoc.2012-368 R5b

MYCOM

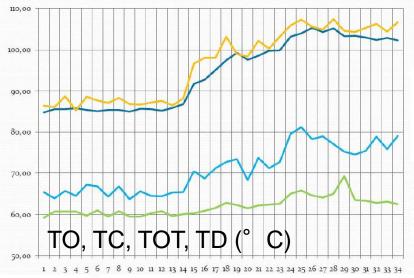
IDENTIFICATION												
COM	PRESS	OR	MODEL	SERIAL NUMB	UNIT							
N160	GHS-\	/		8161006	VP1							
N160	GHS-\	/		8161005	8161005							
MAIN	I DRIV	ΕN	NOTOR	315kW								
QUAI	VTITY			2								
PER MAG	HINE		HEAT INPUT	POWER INPUT	HEAT OUTPUT							
Т	°C		30		77	1						
	kW		RT	BKW	QC	COP-h						
RPM	3	550	820	266	1086	4,1						
	1	800	361	136	497	3,7						
Т	T ℃		40		77							
kW			RT	BKW	QC	COP-h						
RPM 3550		550	1103	263	1366	5,2						
	1	800	471	134	605	4,5						
Т	°C		temperature	(heat input : NH3, heat	output : hot water)							
RT	kW		heat source capacity									
BKW	kW		absorbed motor powe	r at shaft								
QC	kW		heat output capcity									
COP-h			coefficient of heating p	performance								
RPM	rpm		shaft revolution per m	inute								




MAYEKAWA Europe nv/saDOC.2012-368 R5b

MYCOM


LOGGING DATA



ΜΔΥΕΚΔΨ/

MAYEKAWA Europe nv/saDOC.2012-368 R5b

EU Sphere Solutions for Europe

natural refrigerants

EFFICIENCY ANALYSIS

Difference planned & actual results if occured?	
If yes, why were there differences?	The plant produced approx. 10 GWh of energy in 2010, which increased to 13 GWh in 2011.
	The design COP-h is in the range of 3.7 to 5.2 depending on the plant load. The yearly overall COP-h was above 3 for the first 3 years of operation. Compared to classic boiler: saving of 72% input energy !
How is the process of measuring efficiency?	The equipment is operating following load programs which must be covered by the heating plant, which was fullfilled. The machines are equipped with frequency convertor for speed control at part-load operation in order to keep the best COP-h

HEAT SOURCE / HEAT OUTPUT / COP-heating overview

			Τ										extra compressor			COP-final	
											HEAT SOURCE		N20	0VL-L		BKWt	cop-total
TE		ТМ		ТС	RT	QTY		QC		BKWhp	data center	sewage water	rt	k	okw	kW	QC/BKWt
°C		°C	•	°C	kW			kW		kW	kW	kW	kW	k	kW		
	4	4	0	80	220	5	2		2732	526	600) 1606		1360	246		
																772	3,5

12

natural refrigerants

NATURAL REFRIGERANTS SOLUTIONS FOR EUROPE :

THIS PROVEN FIELD EXAMPLE SHOWS THAT THE SUCCESS OF THE NEW TECHNOLOGY IS MUCH DEPENDING ON THE QUALITY OF THE PREPARATIONS DONE ON BEFOREHAND FOLLOWED BY THE INSTALLATION AND COMMISIONING WITH OPTIMAL FINE TUNING, FROM COOPERATION BETWEEN ALL PARTIES INVOLVED :

MANUFACTURER : MAYEKAWA JAPAN/ MAYEKAWA EUROPE CONTRACTOR : THERMA INDUSTRI.

THANKS FOR YOUR ATTENTION !

& much appreciated thanks to the Contractor of the fieldcases : THERMA INDUSTRI AS

NORWAY Mr.Stein Terje Brekke(<u>stein.brekke@therma.no</u>) Mr.Stein Johnsen (stein.johnsen@therma.no)

Copyright © 2012 shecco | All rights reserved.

WORLDWIDE 35 countries / 122 offices 8 production plants

MAYEKAWA Europe Organization

WITZERLAND Rosenbergstrasse 31, 6300 Zug Tel. +41 41 726 8626 Fax+41 41 726 8620 http://www.mayekawa.ch E-mail.imo@mayekawa.ch

SPAIN

Calle Montevideo 5, Nave 13 Pol. Industrial Camporroso 26806 Alcala de Henares, Madrid Tel. +34 91 830 0392 Fax+34 91 830 0397 http://www.mayekawa.es E-mail.mayekawa@mayekawa.es

GERMANY

Munich Office Untere Bahrhotstrasse 38a, 82110 Germering Tel. +49 89 5527 999 0 Fax+49 89 5527 999 19 Weldestraße 122a, 22083 Hamburg Tel. +49 40 27899149 0 Fax +49 40 27869149 9 E-mail info@mayekawa.de

FRANCE

East Branch Office 9, Fue Michael Faraday 78190 Montigny-Le-Bretonneux TeL +33 1 30 58 28 00 Fax+33 1 30 58 19 37 West Branch Office 6, Square des Pruniers 22400 Lamballe TeL +33 2 96 76 59 13 Fax+33 1 30 58 19 37 E-mail mayekawa france@mayekawa.eu

UNITED KINGDOM

16 Oakhurst Gardens DA7 5JP Bexleyheath, Kent Tel. +44 1322 433555 Fax+44 1322 433164

House 3, Flat 54, Mytraya St. 119049 Moscow TeL +7 499 230 01 78 Fex +7 499 230 21 12 http://www.mayekawa.ru E-mail into@mayekawa.ru

BULGARIA Kamen Andreev Str. 24, 1303 Sofia Tel +359 2 8910130 Fax+359 2 8910131

DURAL P.O.Box.61349, LOB. 11. No.126 Jebel Zone, Dubal, U.A.E Tel +971 4 887 2232 Fax+971 4 887 2238

IDIA Mayekawa India PVT, LTD, 309, Centrum Plaza, Golf Course Road Sector-53, Gurgoan Harvana TeL +91 124 4206611 16 Fax +91 124 4206618

AUSTRALIA Unit 2,44 McCauley Street

NSW 2036 Matraville Tel. +61 2 9695 7000 Fax+61 2 9695 7001 http://www.mayekawa.com.au E-mail.mycomaus@mayekawa.com.au

NEW ZEALAND Unit 2, 30 Tul Street Otahuhu Auckland Tel. +68 9 276 2305

Enx +68 9 276 2308 E-mail info@mayekawa.co.nz IT ALLY Via Riccardo Lombardi 19/12 20153 Milano Tel. +39 2 469/29218 Fax +39 2 4531728

TURKEY

Dunya Ticaret Merkezi A/2 Blok Kat 10 No:325 Yesikoy Istanbul Tel, +90 212 465 38 31 34 Fax +90 212 465 36 35

JAPAN HEAD OFFICE 3-14-15 Botan Koto-ku Tokyo 135 6482, JAPAN Tel. 61 3 3642 6161 Fax 61 3 3643 7094 E-mail e-public@mayekawa.co.jp

MAYEKAWA Europe nwise Levrensesteerweg 805 1930 Zevertem - Belglum Tel-432 2 757 90 75 Fax +32 2 757 90 23 http://www.mayekawa.eu E-mail info@mayekawa.eu

http://www.mayekawa.com/

