

Presented by Jan Boone, MAYEKAWA

NATURAL 5 LINE-UP

"Natural Five" Refrigerants and Product Solutions

Refrigerant (Natural Five)		NH₃ R-717	CO ₂ R-744	HC Hydrocarbon	H ₂ O R-718	Air R-728
90°C	,		1101110	,		
60°C		Utility hot water	Utility hot water	Utility hot	Heat recovery	
				water Heating		
10℃		Chilled water Ice making	Chilled water Ice making	HVAC	Chiller	
-15℃ -25℃		Cold storage, Fre	eezer, Fish boat			
230		Specific	Refrigeration ne	eds		
-40°C -50°C			y, Super Low temp age			
-60°C				Cryogenics		Cryogenics
-100°C						
Notes		•Conventional system •Nationa	•Eco-Cute I Projects	•Nat'l Proj. •Butane + Propane	•Nat'l Proj. •Adsorption •Heat recovery	•Nat'l Proj. •Air-cycle

FIELD CASES:

NATURAL REFRIGERANTS In Different Industrial HEAT PUMP plants in Norway

NH3 COMPRESSION HEAT PUMPS

FIELD CASE 1

TECHNOLOGY AREA - ENERGY STATION - COOLING & HEATING

INTRODUCTION

Starting point, need?

Heat output? 2700 kW 77°C The contractor THERMA INDUSTRI has received the request from his customer to install 2 hot water heat pumps, each 1350kW for 77°C.

The plant is an energy station of a technology area.

The cooling is used to produce ice-water for:

Office cooling

Cooling for data center

The heating is used to produce hot water of maximum 82°C for :

District heating

Heat Source?

30°C to 40°C

Requirements?

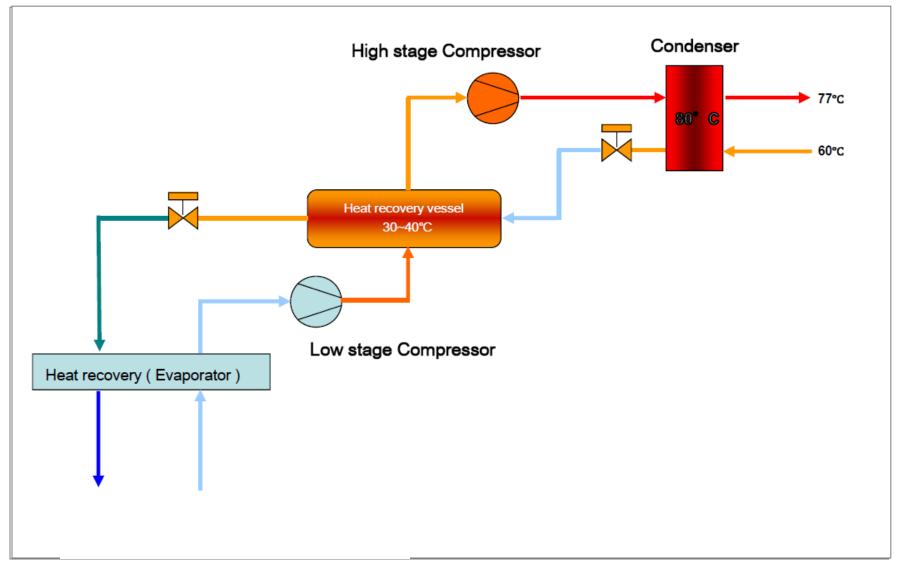
Heat source:

1) Heat rejection from the cooling plant needed for office- and process cooling

Minimum load : 600 kW Maximum load : 5000 kW

2) Sewage water in case insufficient cooling plant heat rejection available.

Restrictions?



->INTRODUCTION

For the temperature of 80°C NH₃ is the most suitable refrigerant				
NH₃ (TC=+80°C & PD=39,6barg) as natural refrigerant to obtain 77°C hot water. NH₃ is standard application for Therma Industri.				
The project started in 2008. Installation done in 2009.				
۷ŀ				

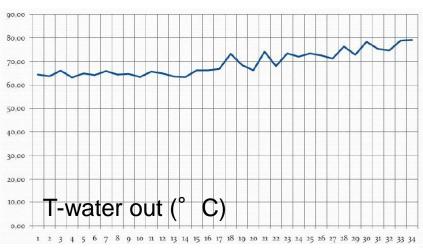
MAYEKAWA Europe nv/sa DOC.2012-386 R1

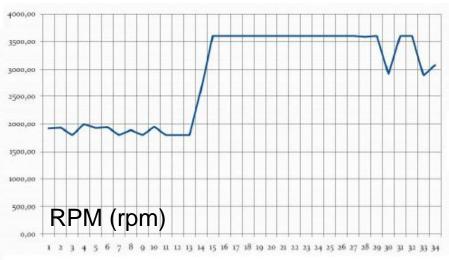
	IDENTIFICATION						
COMI	PRESSOR	MODEL	SERIAL NUMB	ER	UNIT		
N160	GHS-V		8161006		VP1		
N160	GHS-V		8161005		VP2		
MAIN	DRIVE N	MOTOR	315kW	•			
QUAN	YTITY		2				
PER MAC	HINE	HEAT INPUT	POWER INPUT	HEAT OUTPUT			
T	°C	30		77			
	kW	RT	BKW	QC	COP-h		
RPM	3550	820	266	1086	4,1		
1800		361	136	497	3,7		
T °C		40		77			
kW RT		RT	BKW	QC	COP-h		
RPM	3550	1103	263	1366	5,2		
	1800	471	134	605	4,5		

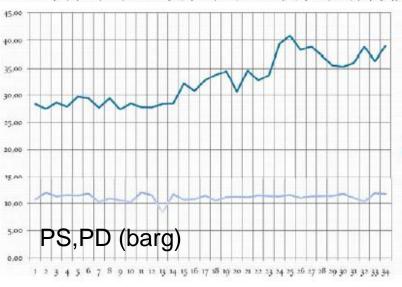
°C temperature (heat input : NH3, heat output : hot water)

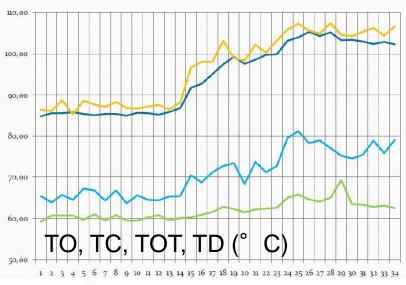
RT kW heat source capacity

BKW kW absorbed motor power at shaft


QC kW heat output capcity


COP-h coefficient of heating performance RPM rpm shaft revolution per minute OPERATING HOURS 2-10-2012 : VP1 : 15470 hrs VP2: 12921 hrs





GGING DATA

EFFICIENCY ANALYSIS

Difference planned & actual results if occured?	
If yes, why were there differences?	The plant produced approx. 10 GWh of energy in 2010, which increased to 13 GWh in 2011. The design COP-h is in the range of 3.7 to 5.2 depending on the plant
	load. The yearly overall COP-h was above 3 for the first 3 years of operation.
How is the process of measuring efficiency?	The equipment is operating following load programs which must be covered by the heating plant, which was fullfilled. The machines are equipped with frequency convertor for speed control at part-load operation in order to keep the best COP-h

HEAT SOURCE / HEAT OUTPUT / COP-heating overview

Γ										extra compres	sor	COP-final	
1								HEAT SOURCE		N200VL-L		BKWt	cop-total
ŀ	TE	TM	TC	RT	QTY	QC	BKWhp	data center	sewage water	rt bkv	W	kW	QC/BKWt
	°C	°C	°C	kW		kW	kW	kW	kW	kW kW	<i>!</i>		
ſ	4	40	80	2206	2	2732	526	600	1606	1360	246		
L												772	3,5

BARRIERS & SOLUTIONS

WHAT BARRIERS WERE WE FACING WITH THIS PROJECT & HOW SOLVED ?	
Technical problems or availability of systems, components, engineers?	As this plant was one of the first in Europe realised, supply and availability of high pressure components has been one of the faced bottle necks. Thanks to the customer who gave full confidence and made strong investment in this new technology to Therma Industri it was possible to succeed and realise this plant with success!
Psychological barriers from customer:management?	Not as customer fully relied on the capability Therma & Mycom.
Safety problems, legilative barriers?	The plant/system was build fully in compliance with CE-PED.
Short term cost differences?	Not

LESSONS LEARNED

WHAT HAS BEEN LEARNED FROM THE PROJECT & HOW CAN THIS BE APPLIED TO OTHER PROJECTS USING NR.	
What will you do different in the future?	For the refrigeration/heating plant, the customer will go for the same solution as demonstrated by this field case which is already running nearly 15.000hrs with full satisfaction!
What can you apply to the next project?	

FUTURE PLANS

Have you planned or do you know about similar projects?	
What are your recommendations for the planning, design etc. Of NR systems?	Continue in the same line. Therma Industri has more than 25 NH₃ hp plants in operation which have been installed since 1998!

FIELD CASE 2

SLAUGHTERHOUSE - HOT WATER PRODUCTION

INTRODUCTION

Starting point, need?

The plant is a Norvegian slaughterhouse existing since 1950, with about 30 plants in operation.

In 1987 a centralisation and modernisation of the sites took place with NH3 as preferred refrigerant.

Since 1989 NH₃ compression heat pumps are used for production of 50°C water for 1200kW.

In 2007 a hybrid heat pump was installed for 500kW.

Requirements 2009?

As there was an important need for more hot water because of production extension,

2400kW 52°C

it was decided to increase the hot water production with an additional 2400 kW.

The contractor THERMA INDUSTRI received the request to install 2 sets MYCOM NH₃ overcompression heat pump screw compressors.

->INTRODUCTION

Why natural refrigerants	
+52°C	
Which choice	NH₃ (TC=+57°C & PD=23 barg) as natural refrigerant to obtain 52°C hot water. Heat source : rejected condensor heat from refrigeration plant
& why	'VERY EFFICIENT' 'CHEAP' 'EXPERIENCE SINCE 1950' NH₃ is standard application for THERMA INDUSTRI.
Timeframe 2009 idea Re-built & Extend? 2011 ∑ 9 wks	The project started in 2009. Followed by some budgetting time. Installation done in 2011 - building out old equipment: 1 week - building in completed after 8 weeks! Start-up OCTOBER 2011.

FUNDING

Funding, partner: other organisation	YES NORWEGIAN ENERGY ORGANISATION ENOVA 900.000 NOK
	This new heat pumps save 1,6 GW fuel per year (approx. 210.000 liter). 'The funding is only valid on condition that savings were realised! After 7 months of operation it was already visible that the 1,6 GW was going to be realised easily!'

EQUIPMENT

MAYEKAWA Europe nv/sa DOC.2012-386 R1

COMPRESSORS	NH3 SCREW COMPRESSOR PACKAGES COMPLETE WITH OIL SYSTEM AND CONTROLS. Producing NH ₃ at 57°C (saturated condensing temp.) from NH ₃ heat source at 20°C (saturated evaporating temp.) to make hot water of 52°C. This hot water is than further heated by other equipment to 84°C and buffered in a 200.000 liter tank.
MODULATING CONTROL VALVE	The suction pressure of the heat pumps is controlled at 7,5 barg (20°C), Representing an important saving of energy on the refrigeration plant: COPc 50% better at least -10/+35°C RT/BKW/COPc=353kW/105kW/3.36 -10/+20°C RT/BKW/COPc=381kW/ 73 kW/5.21. (256MW power saving on 8000hrs) Priority is given to the heat pumps, normally the external condensor is not active.
FREQUENCY CONTROL	The screw compressors are equipped with frequency convertors which result in no reactive power, Saving 8.000 NOK monthly (or x12 = 96.000 NOK per year) The FC drive engines are more expensive but quickly payd back. 'this was a bonus'

	IDENTIFICATION								
COMPRESSOR MODEL			SERIAL NUMB	ER	UNIT				
N170	JM-L		1731020		VP1				
N170	JM-L		1731010	1731010					
MAIN DRIVE MOTOR			250kW						
QUAI	VTITY		2						
PER MAG	CHINE	HEAT INPUT	POWER INPUT	HEAT OUTPUT					
T	°C	20		52					
kW RT		RT	BKW	QC	COP-h				
RPM 3400		971	186	1157	6,2				
	2950	835	162	997	6,2				
	1500	403	85	488	5,7				
T	°C	temperature	(heat input : NH3, heat	output : hot water)					

RT	kW	heat source capacity
BKW	kW	absorbed motor power at shaft
QC	kW	heat output capcity
COP-h		coefficient of heating performance
RPM	rpm	shaft revolution per minute

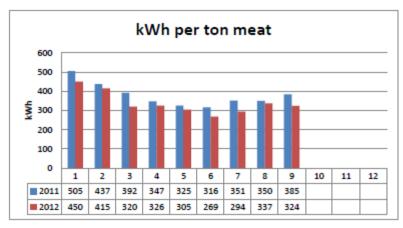
Compre	essor running				10:13:53 AM
Freque	ncy Maximum		Anti d	ycle:	
CAP:	100.0 %	SPD:	2949 Rpm	RH:	7842 H
Remot	e Capa MV: 10	00.0% R	emote Freq	. MV:	100.0 %
PS:	8.18 BarG	TS:	22.9 °C	SSH:	0.6K
PD:	22,46 BarG	TD:	90.3 °C	DSH:	34.4K
POH:	24.55 BarG	тон:	46.5 °C		
DOP:	16,44 Bar	DOP-Op:	2.14 Bar	MA:	299 A
VI	83.2 %	VI Value:	2.5	L port	Danah

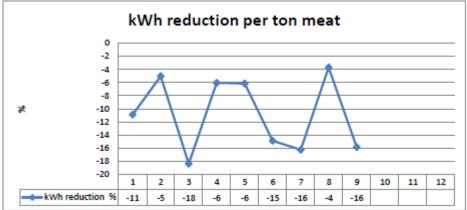
EFFICIENCY ANALYSIS

Difference planned & actual results if occured?	
If yes, why were there differences?	The design COP-h is in the range of 5.7 to 6.2 depending on the plant load. The average COP-h was at 5,5 for the first 11 months of operation.

	DESIGN WEEKLY mWh			
	HRS 276 12997 hrs in 11 months (47 wks)			
RPM	BKW	QC	COP-h	
3400	51	319	6,2	
2950	45	275	6,2	
1500	23	135	5,7	

MEASURED REAL OUTPUT/INPUT mWh					
	BKW	QC	COP-h		
MAY	35	190	5,4		
JAN	41,55	232	5,6		




EFFICIENCY ANALYSIS

Difference planned & actual	results if
occured?	

How is the process of measuring efficiency?

Total power input and heat pump output are checked weekly And taken up in the monthly energy cost per ton of meat which is the basic indicator for the process.

COST ANALYSIS

COSTS INVOLVED	This installation represents a value of 3.500.000 NOK. Includes: NH ₃ Heat pump installation Condensor Subcooler Waterpumps etc.
COST SAVING	1,6 GW fuel (210.000 liter equivalent 1.260.000 NOK) TC=20°C (up to 256 MW/yr or 288.000 NOK) FC drivers (96.000 NOK/yr)

->COST ANALYSIS

Savings or potential savings because of existing or pending regulation

-heat recovery overcompression heat pump uses refrigeration plant heat rejected to the condensor, incl.oil cooler heat rejection

-high efficiency electrical motors IE2 motors are applied

-frequency controllers compressors and waterpumps

-energy-saving condensors

->COST ANALYSIS

Potential savings in the future

Improvement is possible by increasing the ammonia condensing temperature from 57°C to 62°C, requiring a 30 bar safety valve setting on the heat pump unit.

With the old heat exchangers drain water heat is recovered in the 45°C buffer. In the future this heat exchanger can be replaced with a more efficient execution.

Did forecast succeed/expectations were met?

The customer is absolutely happy with the plant

BARRIERS & SOLUTIONS

WHAT BARRIERS WERE WE FACING WITH THIS PROJECT & HOW SOLVED ?	
Technical problems or availability of systems, components, engineers?	Thanks to the customer who gave full confidence and made strong investment in this new technology to Therma Industri it was possible to succeed and realise this plant with success!
Psychological barriers from customer:management?	Not as customer prefered NH ₃ as natural refrigerant since long time and fully relied on the capability Therma Industri for the heat pump technology.
Safety problems, legilative barriers?	The plant/system was build fully in compliance with CE-PED.

LESSONS LEARNED

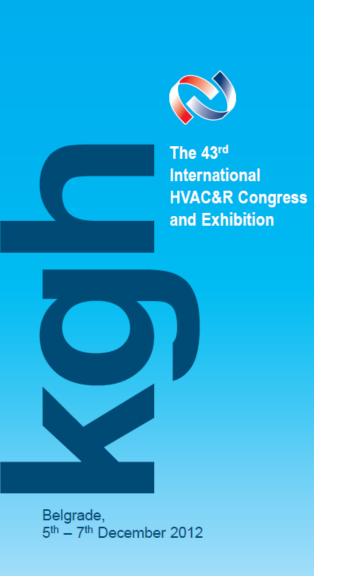
WHAT HAS BEEN LEARNED FROM THE PROJECT & HOW CAN THIS BE APPLIED TO OTHER PROJECTS USING NR.	
What will you do different in the future?	For the refrigeration/heating plant, the customer will go for the same solution as demonstrated by this field case!
What can you apply to the next project?	Higher safety valve set pressure to allow operation with higher water output temperatures.

ACTION PLAN

IDEAS OF CONCRETE ACTIONS TO GET NATURAL REFRIGERANTS FASTER TO EUROPE :	
1.1. What are the concrete actions already done?	Mayekawa only promotes natural refrigerants since the beginning of this century.
1.2. Or/and planning to do?	
2.1. what kind of actions needed to expand NR systems, for : Technology, Training, Safety, Policy, Standards, Regulation, Market, Costs, End-users.	Unlimited development ongoing. With each new product:system neccessary trainings are also made available. Suppliers of refrigeration accessories (EN378 qualified) should make more products available for high pressure/big size duty. Mayekawa still have too often to rely on expensive accessories designed for oil and gas industry.

CONCLUSION

NATURAL REFRIGERANTS SOLUTIONS FOR EUROPE :


THIS PROVEN FIELD EXAMPLE SHOWS THAT THE SUCCESS OF THE NEW TECHNOLOGY IS MUCH DEPENDING ON THE QUALITY OF THE PREPARATIONS DONE ON BEFOREHAND FOLLOWED BY THE INSTALLATION AND COMMISIONING WITH OPTIMAL FINE TUNING, FROM COOPERATION BETWEEN ALL PARTIES INVOLVED:

MANUFACTURER: MAYEKAWA JAPAN/

MAYEKAWA EUROPE

CONTRACTOR: THERMA INDUSTRI.

THANKS FOR YOUR ATTENTION!

& much appreciated thanks to the Contractor of the fieldcases : THERMA INDUSTRI AS

NORWAY

Mr.Stein Terje Brekke(<u>stein.brekke@therma.no</u>) Mr.Stein Johnsen (stein.johnsen@therma.no)

Presented by Jan Boone, MAYEKAWA

The 43rd
International
HVAC&R Congress
and Exhibition

Belgrade, 5th – 7th December 2012

Presented by Jan Boone, MAYEKAWA

WORLDWIDE

- 35 countries / 122 offices
- · 8 production plants

TAYEKAWA Europe Organization

Rosenbergstrasse 31, 6300 Zug Tel. +41 41 726 8628 Fax+41 41 726 8620 http://www.mayekawa.ch E-mail.imlo@mayekawa.ch

Calle Montevideo 5, Nave 13 Pol. Industrial Camporroso 28808 Alcala de Henares, Madrid Tel. +34 91 830 0392 Fax+34 91 830 0397 http://www.mayekawa.es E-mail mayekawa@mayekawa.es

Munich Office

Untere Bahrhotstrasse 39a, 82110 Germering Tel. +49 89 5527 999 0 Fax+49 89 5527 999 19 Weldestraße 122a, 22083 Hamburg

Tel. +49 40 27899149 0 Fax +49 40 27889149 9 E-mail info@mayekawa.de

East Branch Office

9, Flue Michael Faraday 78180 Montigny-Le-Bretonneux Tel. +33 1 30 58 28 00 Fex+33 1 30 56 19 37 West Branch Office 6, Square des Pruniers 22400 Lamballe Tel. +33 2 98 76 59 13

E-mail mayekawa.france@mayekawa.eu

Fax+33 1 30 56 19 37 UNITED KINGDOM

16 Oakhurst Gardens DA7 5JP Bexleyheath, Kent Tel. +44 1322 433556 Fax+44 1322 433184

House 3, Flat 54, Mytraya St. 119349 Moscow Tel. +7 499 230 01 78 Fex. +7 499 230 21 12 http://www.mayekawa.ru E-mail info@mayekawa.ru

Kamen Andreev Str. 24, 1303 Sofia. Tel. ±359 2 8910130 Fax+359 2 8910131

P.O.Box.61349, LOB. 11. No.126 Jebel Zone, Dubal, U.A.E Tel. +971 4 887 2232 Fax+971 4 887 2238

Mayekawa India PVT, LTD. 309, Centrum Plaza, Golf Course Road Sector-53, Gurgoan Haryana Tel. +91 124 4208811 18

Fax +91 124 4209618

AUSTRALIA

Unit 2,44 McCauley Street NSW 2036 Matraville Tel. +61 2 9695 7000 Fax+61 2 9695 7001 http://www.mayekawa.com.au E-mail.mycomaus@mayekawa.com.au

NEW ZEALAND Unit 2, 30 Tui Street Otahuhu Auckland Tel. +68 9 276 2305 Fax 468 9 276 2308 E-mail info@mayekawa.co.nz

Via Riccardo Lombardi 19/12 20153 Milano Tel. +39 2 46929218 Fax +39 2 4531728

Dunya Ticaret Merkezi A/2 Blok Kat:10 No:325 Yeslikoy Istanbul Tel. +90 212 465 36 31 34 Fax +90 212 465 36 35

JAPAN HEAD OFFICE 3-14-15 Botan Koto-ku Tokyo 135 6482, JAPAN Tel. 61 3 3642 6161 Fax 81 3 3643 7094

MAYEKAWA Europe nwisa Leuvensesteenweg 805 1930 Zeventem - Belglum Tel.+32 2 757 90 75 Fax+32 2 757 90 23 http://www.mayekawa.eu E-mail info@mayekawa.eu

Global web site http://www.mayakawa.com/