

16-17 March, 2015 in Brussels

NATURAL REFRIGERANTS

HEAT PUMPS

LINE UP OF NATURAL FIVE: NH3 - CO2 - HC - WATER - AIR

HOT WATER PRODUCTION NH3 HEAT PUMP

LINE UP OF NATURAL FIVE

Natural Five" Refrigerants and Product Solutions HC. Refrigerant NH₂ CO, H₂O Air (Natural Five) R-744 Hydrocarbon R-718 R-717 R-728 Utility hot water 90℃ Heating Utility hot water Heat recovery 60°C Utility hot water Heating Chilled water Chilled water Chiller 10°C HVAC Ice making Ice making -15°C Cold storage, Freezer, Fish boat -25℃ Specific Refrigeration needs Freezer, Freeze-dry, Super Low temp -40°C storage -50°C -60℃ Cryogenics Cryogenics -100°C Conventional Nat'l Proj. Nat'l Proj. Nat'l Proi. HeatCO₂m Notes system, Butane + Adsorption Air-cycle National Projects Propane Heat recovery

FIELD CASE

HOT WATER PRODUCTION NH3 HEAT PUMP

Reason for building a Heat Pump in Bakery Plant in Belgium

- 1. Extension of the production capacity
- 2. Reduction of energy consumption & energy costs
- 3. Contribution to the Sustainability program

Hot water needs at 65°C

- Heat recovery from the NH3 refrigeration system : hot gasses Water is preheated from 5°C to 25°C by a condensation temperature of 25°C
- 2. In order to get water at a temperature of 65°C in an energy efficient way, we used an ammonia heat pump (ODP & GWP = 0) with condensing temperature of 67°C (29,5 barg)

HEAT PUMP:

using NH3 refrigeration system condensor heat as heat source

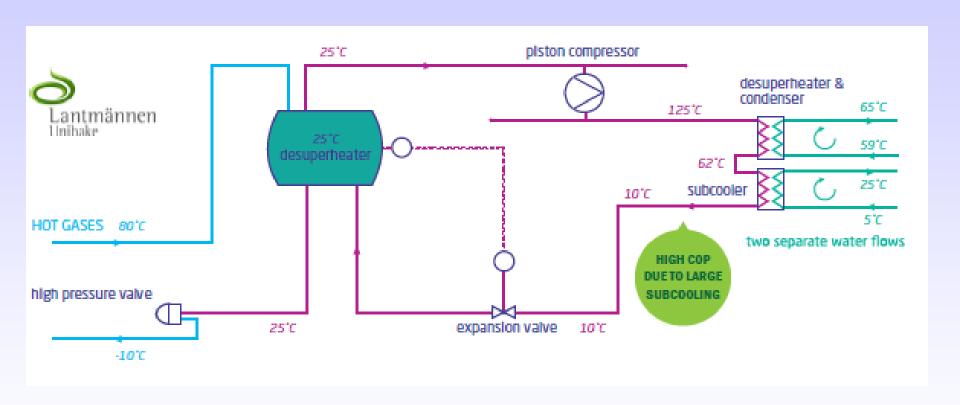
- 1. Positive impact on condensor load
- 2. Recovery of residual heat for hot water production
 - -> Sanitary hot water : 65°C
 - -> process : dough proofer

DEMANDS

1. WATER TEMPERATURE 65°C heat demand: 300 KW (hot water 1000 m3/day)

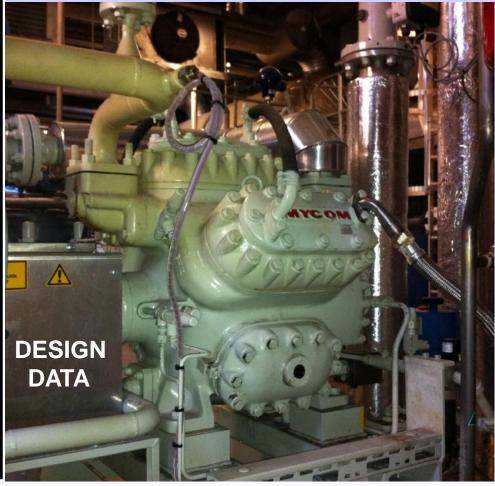
2. WATER TEMPERATURE 25°C heat demand: 65 KW (process water 70 m3/day)

3. COOLING DEMAND: 3 MW


-> NH3 pump circulation refrigeration system (NH3 at -10°C)

-> Cold and freezing rooms (t°: xx & xx °C)

PRINCIPLE SCHEME



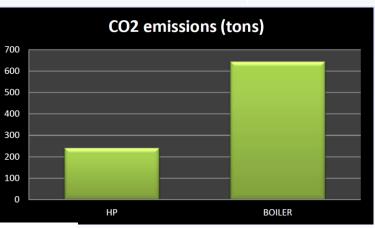
EQUIPMENT

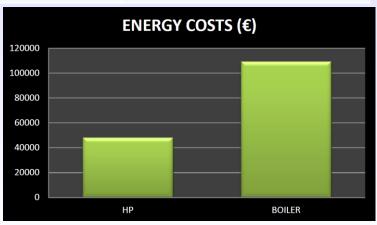
MODI	EL	N6HK 1	
QTY			
SITE LOCA	TION		
COUNTRY		BELGIUM	
TOWN		MOUSCRON	
REFRIGERANT		NH3	
TE	°C	25	
TC	°C	67	
PS	barg	9	
PD	barg	29,5	
RPM	rpm	1150	
QC	kW	375	
BKW	kW	55	
СОР-Н		6,8	
OPERATING HOURS		21/01/2015	
НР	hrs	7186	

Installation date: February 2013

Operating hours per year ±7000 hrs

Calculation detail:
POWER DRIVE
Efficiency =
97~98%


DRIVE MOTOR WEG 315S/M 75kW $\cos^{\varphi} = 0.87/0.75$ efficiency = 93,7/93,2 (100%/50% load)



OPERATION SAVINGS

	HEAT PUMP	BOILER
Performance (COP)	6,8	0,9
Hot water	375 kW	375 kW
Energy consumption primary (8760 hrs/yr)	483 MWh	365000 m3 natural gas
Energy prices	€ 100/MWh	€ 0,30 /m3
Energy costs	€ 48.300,-	€ 109.500,-
CO2 emissions	242 tons	645 tons

CONCLUSION:

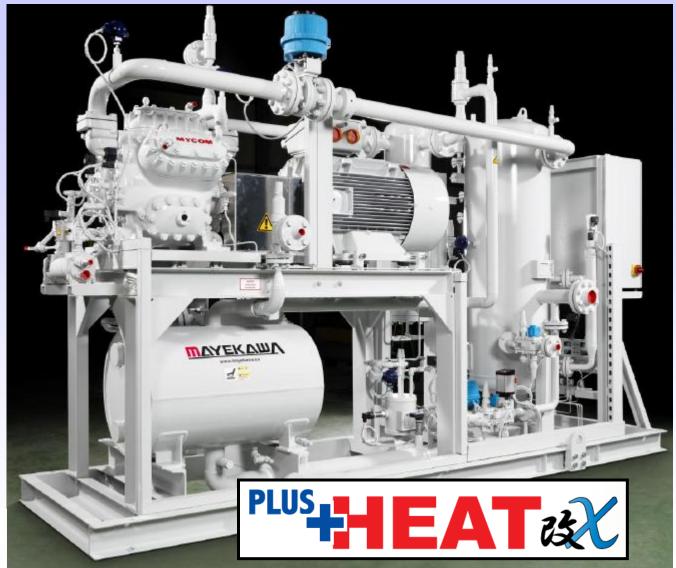
ANNUAL SAVINGS:

OPERATION 61.200 €
CO2 EMISSION 403 tons
CONDENSOR-WATER + treatment)
NATURAL WASTE HEAT
CONDENSOR

INVESTMENT : €150.000 RETURN OF INVESTMENT < 3 YRS

FUNDINGS?

HIGHER EFFICIENCY THAN COMPARABLE TECHNOLOGIES


LONG LIFE TIME (>25 YEARS)

MAINTENANCE LOW-COST

MAYEKAWA NEW STANDARD HIGH STAGE HEAT PUMP

HOT WATER PRODUCTION AMMONIA HEAT PUMP

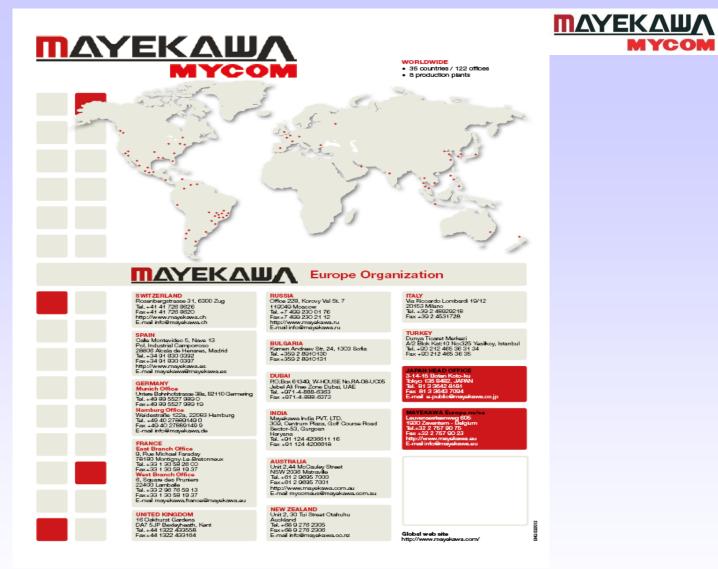
THANKS FOR YOUR ATTENTION! special thanks to:

COFELY AXIMA

GDF SVEZ

Slachthuislaan 23 - 2060 Antwerp - BELGIUM tel. +32 3 235 11 44 - fax +32 3 235 87 46

Nijverheidslaan 61 - 8560 Wevelgem - BELGIUM tel. +32 56 41 41 37 - fax +32 56 41 41 73


Boulevard de la Technicité 24 - 7110 Houdeng - BELGIUM tel. +32 64 23 78 80 - fax +32 64 26 76 35

Avenue de l'Indépendance 21 - 4020 Liège - BELGIUM tel. +32 4 370 05 05 - fax +32 4 370 04 74

Rue de Koerich 66 - L8437 Steinfort - LUXEMBOURG tel. +352 39 95 171 - fax +352 39 95 29

info@cofelyaxima-gdfsuez.be www.cofelyaxima-gdfsuez.be

MYCOM

