

Turbo-Brayton Refrigerator for Superconducting Cable

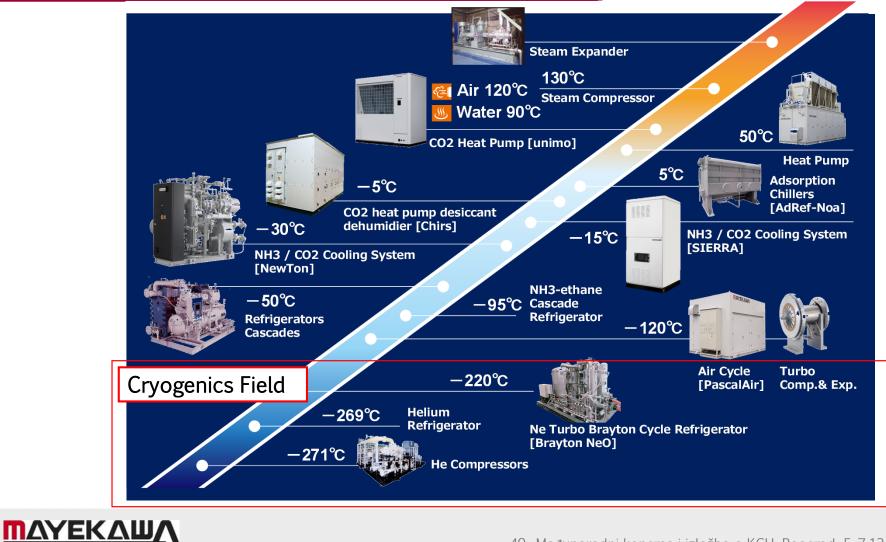
Naoko Nakamura

<u>ΜΔΥΕΚΔΨΛ</u>

CONTENTS

- **1. Cryogenics History of MAYEKAWA**
- 2. Outline of the High Temperature Superconducting (HTS) Cable Project in Japan
- 3. Turbo-Brayton Refrigerator of HTS Cable Project
- 4. Conclusion

kgh


SMEITS

Business Target Range of MAYEKAWA

kgh

SMEITS

24

Cryogenics History of MAYEKAWA

kgh

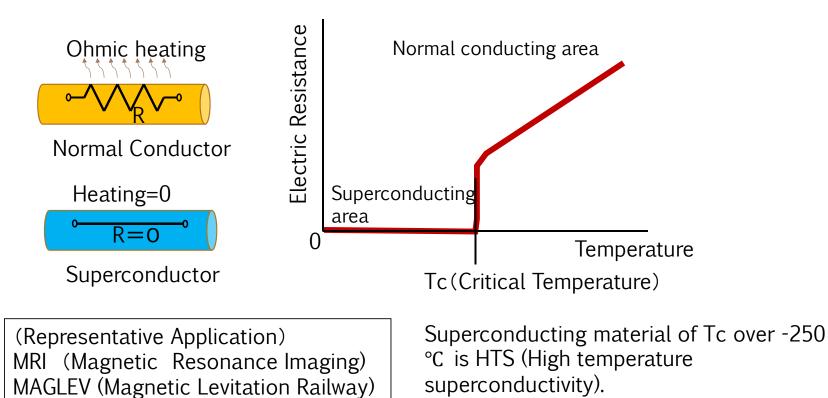
SMEITS

24

49th International HVAC&R Congress and Exhibition, Belgrade, 5–7 Dec. 2018

CONTENTS

- **1. Cryogenics History of MAYEKAWA**
- 2. Outline of the High Temperature Superconducting (HTS) Cable Project in Japan
- 3. Turbo-Brayton Refrigerator of HTS Cable Project
- 4. Conclusion



kgh

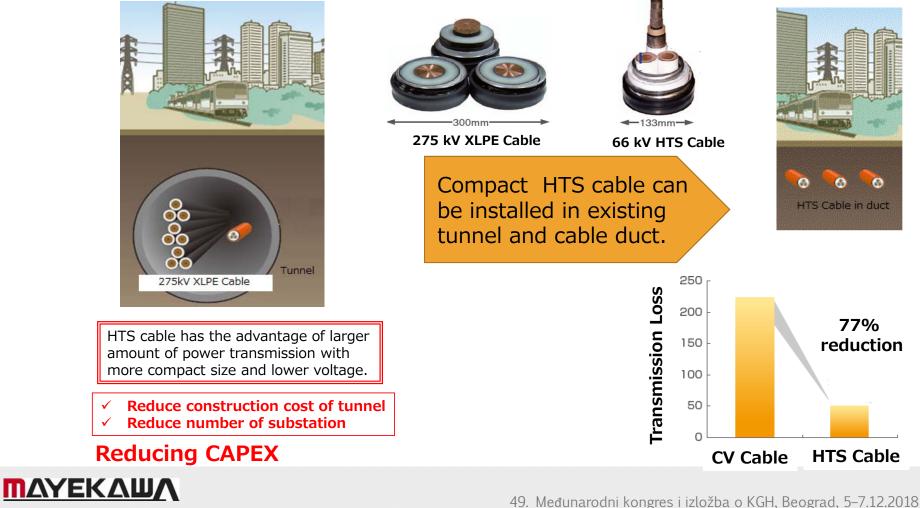
SMEITS

What is Superconductivity?

Superconducting transition of a superconductor occurs at its critical temperature, and the resistance becomes Zero.

<u>ΜΔΥΕΚΔΨΛ</u>

kgh


SMEITS

Superconducting Cable Advantages

kgh

SMEITS

Saving Space; Smaller Space & Lower installation cost

49th International HVAC&R Congress and Exhibition, Belgrade, 5–7 Dec. 2018

By Furukawa Web-Site

rconduct/type.html

https://www.furukawa.co.jp/rd/supe

Outlines of HTS Cable Project

Project Outlines

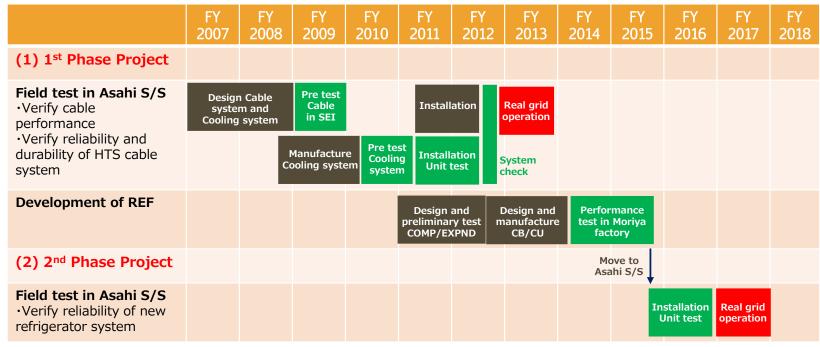
- Asahi S/S, Yokohama, TEPCO's power system
- 66 kV 2 kA 200 MVA class HTS cable with 1G DI-BSCCO wire
- Compact 3-in-One cable designed for 150 mm conduit
- Approx. 250 meter cable with a joint and terminations
- Project Member : TEPCO, SEI , MAYEKAWA supported by NEDO, METI

HTS Cable Specifications

Items	Specifications
Rated Capacity	230 MVA(66 kV, 2 kA)
Maximum Current	2.75 kA
AC Loss	1 W/m/ph at 2 kA
Withstand Voltage	AC 90 kV for 3 hours Imp ±385 kV 3 repetitions
Fault Current	 No degradation against the F.C. of 31.5 kA, 2 sec. The rated capacity can be transmitted immediately after F.C. of 10 kA, 2 sec.

HTS Cable

kgh

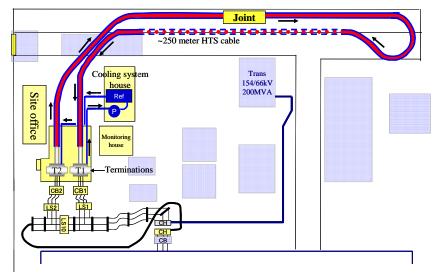

SMEITS

Project Schedule

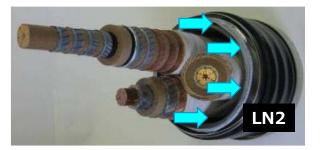
kgh

SMEITS

24



%REF: Refrigerator, COMP: Compressor, EXPND: Expander, CB: Cold Box, CU: Compressor Unit


- Demonstration test of 1st Phase in real grid has started on October 29, 2012 and finished on December 25, 2013. More than 1 year continuous reliable operation has been verified with successful result.
- Demonstration test of 2nd Phase in real grid has started on March 31, 2017. Reliability of new refrigerator has been verified in the continuous operation.

HTS Cable System

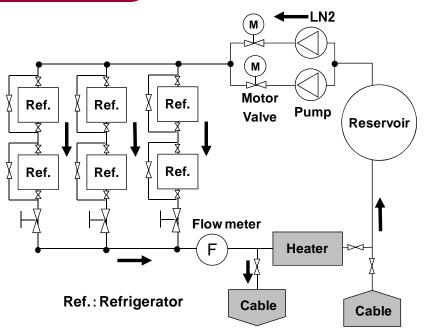
Layout in Asahi S/S

HTS Cable

Stirling Refrigerators

ΜΔΥΕΚΔШΛ

Pump Units


Reservoir

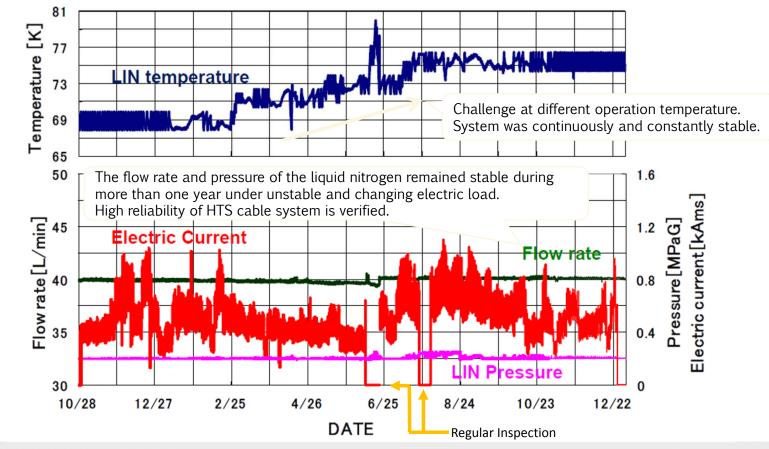
ر kgh SMEITS 24

Cooling System

Cooling System Flow of 1st Phase Project

Table1. Specifications

Items	Specifications	Unit(s)
Refrigerator (Stirling type)	1 kW @ 77 K	6 (Redundancy 1 unit)
Pump (Centrifugal type)	0.15 MPa 40 L/min	2 (Redundancy 1 unit)
Reservoir	1000 L	1

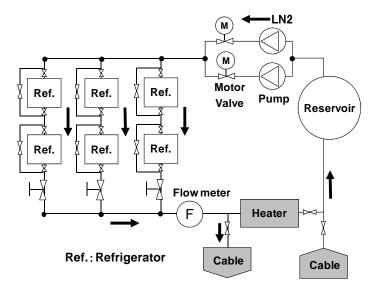

Stirling Refrigerators

Results of 1st Phase Operation Test

More than 1 year continuous reliable operation has been verified with successful result.

<u>ΜΔΥΕΚΔΨΛ</u>

kgh


SMEITS

24

Technical Issues

kgh

SMEITS

Cooling System Flow of 1st Phase Project

Tabke2. Improvement of Cooling Capacity

Items	Cooling capacity
Vacuuming	30 ~ 100 W / 1 unit
Overhauling	200 W / 1 unit
Working gas charge	40 W / 1 unit

Technical Issues of Refrigerator

Low Efficiency

Average COP of one year is 0.05 we measured. COP of a refrigerator is needed 0.1 for saving energy of HTS Cable System.

Short Maintenance Interval

This refrigerator needed vacuuming every two weeks and replacing parts every 8,000 hours. Maintenance interval for the power grid system is required over tree years.

Stirling Refrigerators

CONTENTS

- **1. Cryogenics History of MAYEKAWA**
- 2. Outline of the High Temperature Superconducting (HTS) Cable Project in Japan
- 3. Turbo-Brayton Refrigerator of HTS Cable Project
- 4. Conclusion

kgh

SMEITS

Target Values of Refrigerator

Requirements Performance of Refrigerator for HTS Cable

(1) Large Capacity

Cooling systems of HTS cable are located every multiple km. The cooling capacity of one cooling system is needed 5 \sim 20 kW for reducing CAPEX.

(2) High Efficiency

HTS Cable has advantage of saving energy. If COP of cooling system is 0.1, a ross of HTS cable is reduced 50 % compare with conventional cable. OPEX is reduced.

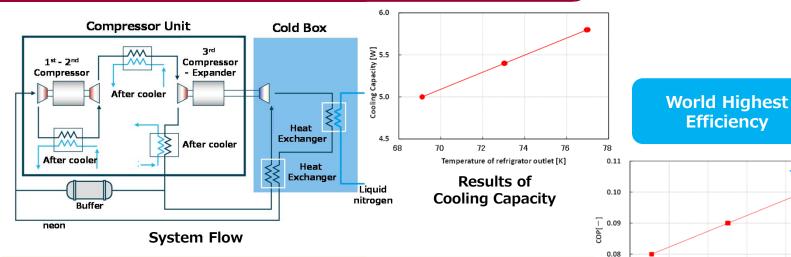
(3) High Reliability

OPEX is decreased long term maintenance interval and reducing troubles. A Target of maintenance interval is close to it of industrial refrigerator. COP = 0.1

Reverse Brayton Cycle

First Target = 5 kW

Maintenance Interval = 30,000 ~ 40,000 hours


Magnetic bearing

<u>ΜΔΥΕΚΔΨΛ</u>

kah

SMEITS

- High Efficiency: Adiabatic efficiency of turbo-machine = 0.8
- High Reliability: Perfect contactless by using magnetic bearing

Impeller of Compressors, Expander

1st – 2nd Compressor

3rd Compressor - Expander

72

Temperature of refrigrator outlet [K]

74

76

78

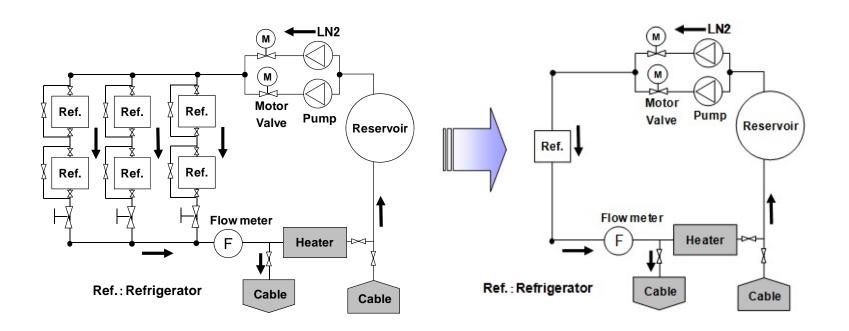
70

Turbo-Brayton Refrigerator

kgh

SMEITS

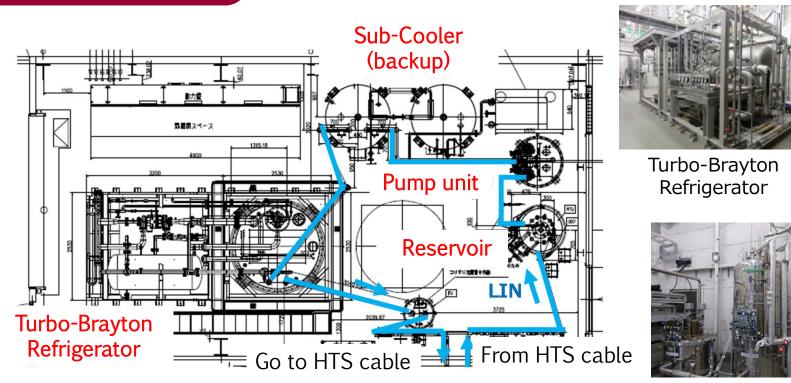
24


49. Međunarodni kongres i izložba o KGH, Beograd, 5–7.12.2018 49th International HVAC&R Congress and Exhibition, Belgrade, 5–7 Dec. 2018

0.07

68

Cooling System Flow


1st Phase

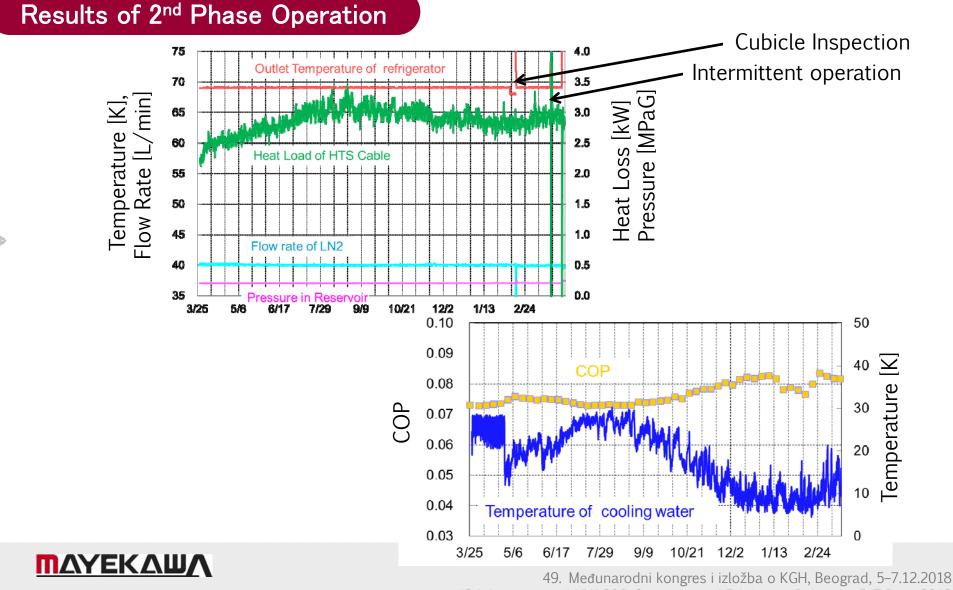
2nd Phase

Layout of Cooling System

LIN: Liquid Nitrogen

Layout of the cooling system

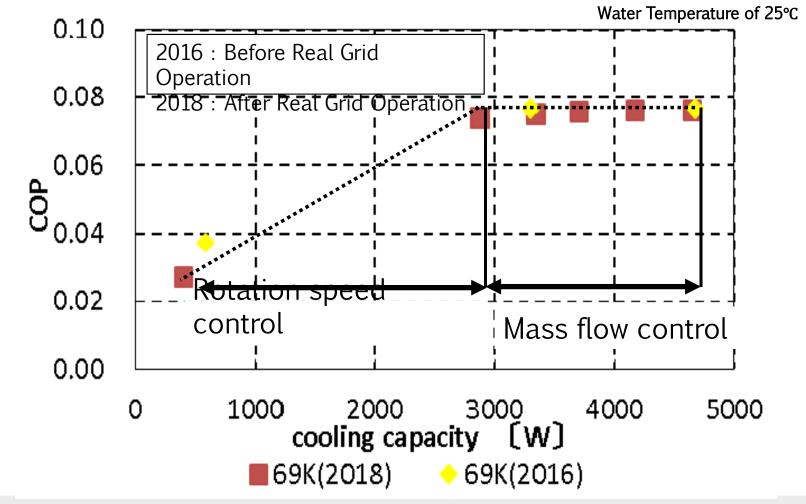
Pump Unit and Reservoir


14,600 hours has passed since starting operation of cooling system.

kgh

SMEITS

24


kgh

SMEITS

49th International HVAC&R Congress and Exhibition, Belgrade, 5–7 Dec. 2018

19

Results of Cooling Capacity Control

<u>ΜΔΥΕΚΔΨΛ</u>

kgh

SMEJTS

Turbo-Brayton Refrigerator Commercial Base

The refrigerator is more compact and more easier operation.

Characteristics

- Compact (adapted marine container size)
- Easy operation
- Saving Energy by high efficiency
- Long in a maintenance interval
- Green (Natural refrigerant)

Indoor Type

Table2. Specifications		
Items	Specifications	
Cooling capacity	5 kW @ 77 K	
СОР	0.08 @ 77 K	
Dimensions (Outdoor)	2,200 × 3,600 × 2,200 mm	
Weight (Outdoor)	5,500 kg	
Power supply	AC380 ~ 480 V, 75 kVA	
Cooling water	200 L/min (Inlet temperature 32 ℃)	

Table? Specifications

Outdoor Type

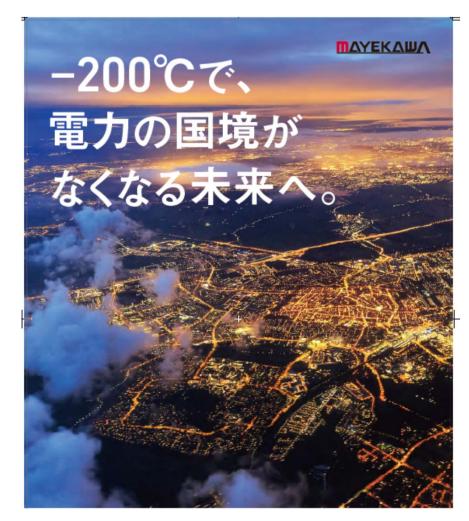
CONTENTS

- **1. Cryogenics History of MAYEKAWA**
- 2. Outline of the High Temperature Superconducting (HTS) Cable Project in Japan
- 3. Turbo-Brayton Refrigerator of HTS Cable Project
- 4. Conclusion

kgh

SMEJTS

Conclusion


- 1. HTS (High Temperature Superconducting) Cable has advantages of larger amount of power transmission with more compact size and lower voltage. It is necessary a high performance refrigerator for practical use of HTS Cable.
- 2. Turbo-Brayton refrigerator we developed has been verified a reliability in the continuous HTS Cable system operation on a real grid in Asahi Sub-station. Practical use of HTS Cable will be soon realized by success of the demonstration test.
- 3. Turbo-Brayton refrigerator commercial base was developed. This refrigerator is more compact and more economical.

kgh

SMEITS

Thank you very much.

